
Using smartcards to secure a personalized gambling device

William A. Aiello Aviel D. Rubin Martin J. Strauss

AT&T Labs { Research, Florham Park, NJ, USA

faiello,rubin,mstraussg@research.att.com

Abstract

We introduce a technique for using an untrusted de-
vice, such as a hand-held personal digital assistant or
a laptop to perform real �nancial transactions without
a network. We utilize the tamper-resistant nature of
smartcards to store value on them and perform prob-
abilistic computations based on user input. We dis-
cuss an application of this to gambling. The technique
has the properties that the user is guaranteed to make
money when he wins and the house is guaranteed to
make money when the user loses.

1 Introduction

We are currently experiencing a proliferation of
lightweight handheld devices, such as the 3Com palm
pilot, windows CE devices, and even laptops that weigh
under three pounds. Many of these devices are so
portable that people have them in their pockets and
use them at all times. Our goal is to enable people
to utilize these devices during otherwise dead time
perhaps at the doctor's o�ce, or in line at the su-
permarket. We are interested in utilizing the time
when the user does not have access to online (e.g. on
the Internet) connectivity. When users have network
access, then applications such as banking, shopping,
and gambling can be implemented securely because
the resources that need protection, namely money,
can be secured by cryptographic means. There are
many protocols for secure commerce on the Internet

(e.g. SSL [10]), and the protocols are already imple-
mented on many mobile devices. Hall et. al. present
protocols for remote electronic gambling [9] for online
users. However, there are many times when a user is
in possession of a small computing device, but not on
the network. In such scenarios, it is di�cult to allow
the user to perform �nancial transactions because in-
teraction with servers is not possible. We assume that
the user has full access to the device, so secrets (such
as cryptographic keys) cannot be safely stored on it.
In our design, the portable computing device is aug-
mented with a smartcard reader. The user obtains
a smartcard and connects it to the device. We show
how this design can be used for an untrusted user to
perform transactions such as placing bets on the out-
come of a probabilistic computation. This has direct
applications to gambling. In addition, we introduce
protocols for adding (purchasing) or removing (sell-
ing) value on a smartcard without requiring a network
connection. We present protocols whereby neither the
user nor the house can bene�t from cheating. For the
remainder of the paper, we focus on the gambling ex-
ample, although the architecture is applicable to other
scenarios as well.

2 Architecture

There are several principals who participate in the
protocols. (The term \principal" is used for a partic-
ipant in a protocol.) We de�ne them as follows.

The user The user is the entity that gambles against
the house. The user is in possession of a portable
computing device and purchases smartcards with
value on them in order to play.

The house The house is the entity that runs the
gambling operation. It issues smartcards with
value on them in exchange for money. The house

is responsible for redemption of money on smart-
cards. It is assumed that there is, associated
with the house, a public/private key pair whose
public component is well-known.

The device We assume that there is a relatively small,
portable device that is capable of computation.
This could be a special-purpose device built for
gambling applications or a standard device such
as a palm pilot or a laptop computer. The only
physical requirement is that there needs to be a
way to read a smartcard. There must also be a
source of random numbers. The device is used
to interface with the user, so it should have a
nice graphical display. We also assume that the
public key of the house is available on the de-
vice. We assume that the user trusts the de-
vice to behave properly. In the extreme, he can
build his own device to ensure that. In other
words, the device is the agent of the user. The
functionality of the device can be fully speci�ed
so that di�erent manufacturers can produce de-
vices that interoperate. There are no security
requirements associated with the design of the
device.

The smartcard The system utilizes tamper-resistant
smartcards. The cards contain a processor and
some memory. We assume that values can be
stored on the card such that reading or modi-
fying them is more costly to an attacker than
the bene�t that could be derived from such an
attack. As long as the total amount that can
be stored on the card is kept relatively small
(several thousand dollars should do �ne), there
are many cards available today that meet this
requirement. Next, we assume that the smart-
card has a serial number, imprinted visibly on
the outside, and that information depending on
both the card and the house can be placed in
the smartcards' secure memory at its manufac-
ture time. (For example, we assume the card's
secure memory can be given a signature from
the house on the card's serial number. We'll
discuss this again later when present our pro-
tocols.) Finally, the smartcard must be able to
generate random numbers. This can be achieved
either in hardware (e.g. using a noisy diode or
a low-accuracy clock) or in software (e.g. us-
ing a built-in seed and a cryptographic pseudo-
random number generator [11]). The latter re-
quires some nonvolatilememory, where some state
can be maintained over time. Ideally some com-
bination of these techniques is used.

The arbiter The arbiter is a party that is used to
resolve disputes. In practice this can be a court
of law or an entity mutually agreed upon by the
users and the house.

3 Security requirements

In this section, we describe the security require-
ments of the system as they apply to the gambling
application. The requirements are all met by the pro-
tocols described later.

1. Only the house should be able to add or subtract
money from the smartcard without participat-
ing in a game.

2. Once a user places a bet and plays a game, he
cannot prevent the loss of that amount if he loses
the game.

3. A user can detect the situation where he wins
a game, but is not credited for his bet. He can
also prove this to the arbiter.

4. The house must publicize the algorithms and
probabilities that are used on the smartcard.
That is, the house must announce the rules for
each game. It must be impossible for the smart-
card to weigh the probability in favor of the
house beyond those given by the rules.

5. The house can set limits, per game or over all
games, on the smartcard, and games with bets
beyond the limits do not count.

6. The user cannot risk more than the amount on
the card.

7. The house must refund the amount on the smart-
card whenever the user wishes. This require-
ment must be satis�ed outside of the system.
One possibility is for the house to keep a certain
amount of money in escrow, under the control
of the arbiter. When the money is refunded, the
amount is deducted from the smartcard.

These requirements all hold in our system. Thus, the
user can play games with assurance that if he wins, he
will actually win the money in the bet, and the house
knows that users will not be able to cheat. In addi-
tion, the user is guaranteed that the odds of winning
published by the smartcard are accurate.

4 The protocols

In this section, we describe the protocols between
the various parties for the gambling system.

4.1 Preliminaries

Here, we describe some notation and structure of
our protocols. This section describes protocol aspects
that are common throughout the paper.

4.1.1 Messages

We use the notation

A! B : Message

to represent that A is sending Message to B. Unfor-
tunately, this notation does not explicitly state any
computation or veri�cation that is performed by ei-
ther A or B, so we include those descriptions in text
that annotates the messages.

4.1.2 Digital signatures and encryption

We use the notation [text]SC to indicate that text is
signed by the entity SC. Throughout the paper we
use SC to represent the smartcard and D to represent
the device. We also assume that the message con-
taining [text]SC includes the public key certi�cate for
SC signed by the house. So, in e�ect, when the mes-
sage [text]SC appears for the �rst time in a protocol,
it should be read as [text]SC; [SC; public-key(SC)]H ,
which represents a signature by the house. Thus, any-
one in possession of the public key of the house can
verify the certi�cate and then the signature by SC.
We do not include the certi�cate in the messages be-
low as to not burden the reader, but we assume they
are implicit in the messages. We also assume that sig-
nature veri�cation is part of the protocol and do not
ever mention that explicitly.

In our protocols, the smartcard signs every message
before it is sent. For simplicity, we do not explicitly
show that the messages are signed. So, whenever

smartcard ! device : msg

appears, it should be interpreted as

smartcard ! device : [msg]SC

4.1.3 Chaining messages together

Our system design is assymetric in the sense that
the smartcard's protection against the user is tamper-
resistant hardware, whereas the user's protection against

the smartcard is the ability to take a transcript of the
communication to the arbiter for dispute. Thus, the
smartcard signs messages, but the device does not.

Hash chaining is a method for linking messages to
each other within a communication session [8, 14, 9,
15]. Throughout the paper, when discussing hash
functions, we refer to cryptographic hash functions
such as MD5 [13] and SHA1 [2]. Our goal is for the
device to store an undeniable transcript of all com-
munication with the smartcard. That is, the house
should not be able to repudiate that the messages in
the transcript were sent.

In addition to the properties discussed above, we
would like to make it impossible for the smartcard to
misbehave by including a bogus message as the previ-
ous message received from the device. To achieve this,
the device generates a random key, KD upon startup,
and uses this key to produce a MAC of messages that
are sent to the smartcard. Subsequent MAC compu-
tations include all previous MACs, and we call this a
running MAC. When the smartcard includes the pre-
vious message in its signed message, the running MAC
is included as well. Since every message from the de-
vice contains a running MAC, it is impossible for the
smartcard to produce a valid message that contains a
forged message from the device.

We can also achieve nonrepudiation of messages
sent by the device if we can assume that there is no
way for the device to generate two messages that map
to the same MAC output with di�erent keys. While
this is not a proven property of MAC functions such
as HMAC, it is widely believed to hold. (The smart-
card can improve things by including a new random
value in every message.) The running MAC is in-
cluded in every message sent from the device to the
smartcard. It is computed over the previous message
received from the smartcard, the current message be-
ing sent, and the running MAC from the previous mes-
sage sent. The running MAC is de�ned as follows:

� RMAC1 = MACKD(msg1)

� RMACn = MACKD(msgn�1;msgn; RMACn�2)

where `,' denotes concatenation.
To illustrate, the communication between the de-

vice and the smartcard is as follows:

device ! smartcard : x1 = msg1;MACKD (msg1)

smartcart ! device : x2 = [msg2; x1]SC

device ! smartcard : x3 = msg3;MACKD(msg2;
msg3;MACKD(msg1))

smartcart ! device : x4 = [msg4; x3]SC

The third message could be written simply as

smartcart ! device : x3 = msg3; RMAC3

The device should verify the signature and the MAC
values in each message before accepting it. The pur-
pose of the signed MAC chain is non-repudiation. Armed
with a history of the messages, the device can prove
that it sent and received the messages in the order
that they occurred. In the remainder of the paper,
we assume that these hash values are included in each
message from the smartcard, and we do not explicitly
show them. So, we write the above protocol as:

device ! smartcard : msg1

smartcart ! device : msg2

device ! smartcard : msg3

smartcart ! device : msg4

and all the MACing and signing is implicit.

4.2 Setup

To set up the gambling application, the user must
purchase a smartcard with value from the house. This
happens outside of our system. The user must have
some con�dence that the smartcard really has the
amount of money that the user has paid. Therefore,
we de�ne the following query which the smartcard and
the device must support:

Device ! Smartcard : money-query

Smartcard ! Device : value

The device prompts the smartcard for the amount of
money. The smartcard returns the current balance.
Recall that the message from the smartcard is actually
signed and contains several hash values, but we omit
these details in our protocols description as described
in Sections 4.1.2 and 4.1.3.

4.3 Dealing a random card

In this section, we describe a protocol for the smart-
card to deal a random face-up card to the device. That
is, we give a protocol whereby a card is chosen at
random from the deck such that each card is equally
likely to be chosen, and there is no way for the device
nor the smartcard to bias the selection. In the end,
the card is known to both parties. The basic idea is
based on previous work on coin
ipping by telephone
[5]. In the remainder of the paper, when we say that

the smartcard deals a random card to the device, we
are referring to this protocol.

We focus our protocol description on a standard
pocker deck of 52 cards, although the protocol can
easily be generalized for other games. We map the
cards in the deck to integers as follows so that the
problem of dealing the �rst card reduces to picking a
number from 1 to 52.

1 Ace of Spades

2 Two of Spades

...

13 King of Spades

14 Ace of Hearts

15 Two of Hearts

...

26 King of Hearts

...

52 King of Clubs

Thus, we say that the smartcard deals the Ace of
Hearts to the device if the the number 14 is chosen.
In order for a card to be dealt, the device and the
smartcard run a protocol whereby they agree on a
number from 1 to 52. To accomplish this, each side
provides a random piece, and they are combined in
such a way that a random choice results.

We �rst describe how the �rst card is chosen, and
we then show how subsequent cards can be dealt from
the deck. The smartcard chooses a random number
saltSC from 1 to 2160, and sends it to the device, and
the device chooses a random number saltD from 1
to 2160. Next, the device picks a random number
from 1 to 52; we call this valueD. The device then
concatenates the three numbers and computes a one-
way transformation, halfD = H(saltSC; saltD; valueD).
Here we assume that for a randomly choosen saltD un-
known to the smart card, halfD appears pseudo ran-
dom (and thus reveals only neglible information about
valueD) to the computationally bounded smart card.
In practice, we can use a cryptographic hash functions
such as SHA1. The smartcard then picks a random
number, valueSC, from 1 to 52.

The device sends halfD to the smartcard. The smart-
card replies with valueSC (recall from sections 4.1.2
and 4.1.3 that all messages from the smartcard are
signed and contain a running MAC). At this point,
both sides have committed to their values, but the

smartcard does not know valueD. So, the device sends
valueD, saltD to the smartcard. Now, the smartcard
can verify that the value and salt in this message, to-
gether with saltSC hash to the half sent earlier. Both
sides next compute ((valueD + valueSC) mod 52) + 1.
The result is a random number from 1 to 52. The pur-
pose of saltD is to prevent the smartcard from com-
puting the value chosen by the device by exhaustively
searching for the preimage of H. For example, if the
device simply sent H(valueD) or H(valueD; saltSC),
the smartcard could computeH for each number from
1 to 52 and see which one matched. It could then
force any card it wanted to as the choice by picking
its value appropriately. The purpose of introducing
saltSC is to prevent a nonuniform device from open-
ing the commitment H(�) in two ways. For exam-
ple, if the protocol requires the device simply to send
H(saltD; valueD), then the device could compute, of-

ine, values saltD, valueD, saltD

0, valueD
0 with

H(saltD; valueD) = H(saltD
0

; valueD
0) but valueD 6=

valueD
0

mod52. This would allow the device to a�ect
the outcome of ((valueD + valueSC) mod 52) + 1 by
choosing valueD or valueD

0 after learning valueSC. It
follows that either the device or the smartcard can in-
sure that the resulting value is random, unbiased by
the other party.1

The device and smartcard are running a commit-
ment protocol. For general background on bit com-
mitment, see [6] and [12]. Note that we are using
a hash function to implement commitment, but there
are implementations of commitment that use only pseu-
dorandom number generators [12]. Also, note that the
commitment is over a secure channel between two par-
ties (the smartcard and the device), neither of which
performs simultaneous transactions with other par-
ties. Thus we don't need the commitment protocol
to be non-malleable [7], even if several cards are dealt
in parallel. This is good, because non-malleable com-
mitment is ine�cient.

Until now, we showed how to pick one card out of
a deck of 52 cards. However, most interesting games
require that more than one card be dealt. The device
and the smartcard keep track of which cards have al-
ready been dealt using a 52-bit vector. A bit in the
vector is set if the corresponding card is still in the
deck, and it is a zero otherwise. The number of 1s in

1The hash functionwe use here, as well as the hash functions

used in Section 6, must have a number of scrambling properties

of the sort commonly assumed in the literature and commonly

attributed to SHA1. In particular, the hash functions need to

interact securely with other operations such as signatures and

concatenation, as well as the particular rules of the card game

implemented. The precise requirements of the hash function

are straightforward, though tedious, to enumerate precisely.

the vector represent the number of cards remaining in
the deck.

We modify the protocol above as follows. The �rst
message from the device to the smartcard is (halfD; vector),
where vector is the 52-bit vector. The smartcard replies
with valueSC; vector. In this way, the two sides agree
about which cards are in the deck. The two values,
valueD and valueSC are chosen from 1 to n, where n
is the number of 1s in the vector. Then, once all of
the messages have been exchanged, the two sides com-
pute k = ((valueD + valueSC) mod n) + 1. The result,
k, is between 1 and n, inclusive. The card chosen
corresponds to the position of the kth 1 in the vector.

To illustrate, take the following example. The vec-
tor is

10110101111011111111010111
10111011011110111101100110

There are 38 1s in the vector. Say that valueD = 27
and valueSC = 18. Then, k = ((27 + 18) mod 38) + 1,

which is 8. The 8th 1 is in position 11 in the vector,
so the card dealt is Jack of Spades.

4.4 The game

We assume that a smartcard can support many dif-
ferent types of games with their own bet limits and
odds. Thus, we de�ne the following messages where
the smartcard informs the device of the games that
are available.

Device ! Smartcard : game-query

Smartcard ! Device : game-list

Here, game-list is a list of games. It is assumed that
the rules along with their implied probabilities are ei-
ther known or included in the list. The list of games
could simply be a list of numbers that index into a
booklet where games are described in detail. The
booklet could be available on the device, so that the
user could browse the rules.

4.4.1 An example: high card

For the purpose of simplicity, we describe a game
where there is no interaction with the user once the
cards are dealt. We also assume cards are only dealt
face-up. The example is a game of high-card where
the user and house are each dealt a card from the
same deck and whoever has the highest card wins.
The house wins in the case of a tie and Aces are al-
ways high. It is assumed that each game is identi�ed
by some ID. An example is:

Game: high-card
Odds: 27:24
Limit: $100 per game
The details of how games and odds are represented

are not important for this paper, as long as we assume
that they are somehow represented.

Before the user begins a game, the device does a
money-query to link the balance in the card before
the game to the transcript for the game. The user
picks a game and speci�es the bet. Of course, the
messages from the smartcard are signed and contain
hashes of previous messages as described earlier. A
detailed example of the high-card protocol is given in
Figure 1.

We refer to Section 4.3 where the random deal is
described in detail. In message 5, the device speci-
�es that the user bets $15 on a game of high card.
In messages 6 through 9, the device and smartcard
perform the protocol for dealing a single card (the
device's card), and in messages 10 through 13 the de-
vice and smartcard deal the smartcard's card. The
�nal messages have the e�ect of entering the outcome
of the bet and the new balance into the hash-chained
transcript maintained by the device.

It is important that the commitment made in mes-
sage 7 is veri�ed. So, in our example, after the smart-
card receives message 9, it must check that the value
submitted is the same one that was committed to ear-
lier. To do this, the smartcard recomputes the hash of
two salts and the value and compares it to the value
submitted in message 7. It also veri�es that the card
chosen is the correct one, the 8 of Hearts in our ex-
ample.

In practice, one would exchange the roles of the
smartcard and device for the card dealing protocol
in messages 10 through 15 to increase the number of
messages sent in the same direction as previous mes-
sages. Successive messages in the same direction may
be collapsed to shorten the protocol. Another simple
optimization is to deal all of the cards at once. This
could easily be accomplished by combiningmessages 6
and 10, 7 and 11, etc. To deal n cards, the size of each
message increases by a factor of n, but the number of
messages remains constant at four.

5 Other games

The same techniques described above can be used
to play other games. We brie
y describe how the tech-
niques in this paper could be used to play the follow-
ing:

Blackjack The random deal could be used to play

blackjack against the house. First, the house
\deals" two face up cards to the user, using the
techniques of Section 4.3. Then, the house deals
itself a card. The device can display a face down
card to the user, but the card has actually not
been dealt yet. The user then decides how to
play his hand, and cards are dealt as requested.
Finally, when the user decides to hold his hand,
the dealer's second card is dealt. In the device,
the down card appears to
ip over. Finally, any
additional cards needed by the house are dealt.
The signed transcript is used to settle any dis-
putes.

Slots The techniques used to deal cards could be used
to pick random numbers of any size. A slot ma-
chine is easy to implement with such a tool. The
pictures on each wheel of the slot machine are
numbered, and the spinning of each wheel corre-
sponds to the house \dealing" a random number
in the proper range. If the slot machine dis-
plays �ve images, then �ve random numbers are
agreed upon by the device and the smartcard,
and the graphical user interface is used to dis-
play �ve pictures corresponding to the numbers
chosen.

Craps Rolling the dice to play Craps corresponds to
picking two random numbers between one and
six. It is straightforward to apply the techniques
from Section 4.3 to do this.

Poker A typical poker machine works as follows. The
house deals �ve cards to the user. The user dis-
cards up to four of them (four is only allowed if
the �fth one is an ace). The house then deals
cards to replace the discarded ones. If the qual-
ity of the hand is above a certain threshold, the
user wins. This can all be accomplished using
techniques from Section 4.3.

6 Adding or removing value

In this section we explore protocols for increasing
or decreasing the value on the card. To increase the
value on the card the user pays money to the house,
and the house somehow increases the balance on the
card. To remove value, or \cash out" the balance on
the card is reduced and the house pays the money to
the user. These protocols are applicable beyond the
domain of gambling.

Both of these protocols are easy if we assume a high
bandwidth channel between the card and the house.

1. Device ! Smartcard : game-query

2. Smartcard ! Device : game-list

3. Device ! Smartcard : money-query

4. Smartcard ! Device : $1545

5. Device ! Smartcard : $15, high-card

6. Smartcard ! Device : saltSC

7. Device ! Smartcard : half
D
,vector

8. Smartcard ! Device : valueSC, vector

9. Device ! Smartcard : valueD, saltD, I get 8 of Hearts

10. Smartcard ! Device : saltSC
0

11. Device ! Smartcard : halfD
0, vector0

12. Smartcard ! Device : valueSC
0, vector0

13. Device ! Smartcard : valueD
0, saltD

0, You get 5 of Clubs,

14. Device ! Smartcard : I win $15

15. Smartcard ! Device : You win $15, new balance: $1560

Figure 1: Protocol for High-Card.

This could be achieved, perhaps, by equipping the
device with a modem that could dial into a modem at
the house. For example, to add $100, the user would
pay $100 to the house, say using a credit card, over
the phone or on the web. Then, the user would dial
the house from the device, and the house would send
a signed message to the card to increase the balance
by $100. A challenge/response protocol could be used
to avoid replay. The smartcard veri�es the signature
of the house and increases the balance.

To cash out in this scenario, the user indicates to
the house that he wishes to cash out, and the smart-
card sends a signed message to the house, over the
modem connection, indicating that the user cashes
out a particular balance. The smartcard then sets the
balance to zero, and the house issues a check for the
amount to the user. Of course, measures are taken to
protect against replay.

It would be nice to remove the assumption of a mo-
dem and a high bandwidth connection. In the next
section, we present a protocols for adding cash and
cashing out without direct communication between
the device and the house.

6.1 Purchasing more credit on the card

We describe a protocol whereby a user can purchase
more credit for his smartcard without a direct connec-
tion between the device and the house. We assume
some low bandwith connection between the user and
the house and between the user and the smartcard.
For example, the user could make a phone call to the
house, enter a credit card number and expiration date,
and receive a short string of alphanumeric characters
back. The same could be accomplished over the web.
The actual transport does not matter, except for the
limiting factor that there is no way for the house or
the device to communicate thousands of bits to each
other in a user friendly fashion.

Once the user has paid for the credit, there must be
some way for the house to add the credit to the smart-
card in such a way that the amount is added exactly
once, even in the face of a malicious user who is trying
to maximize his value. In our protocol, the smartcard
authenticates the request from the house by verify-
ing that only the house could have possibly generated
some string. One way to achieve this is to establish
a shared secret between the house and the smartcard.

However, every smartcard must have a di�erent se-
cret. Otherwise, compromising one smartcard could
lead to impersonation of all the other smartcards. In
addition we do not wish to store a large number of
secret keys at the house.

The solution we employ makes use of psuedoran-
dom functions. The house generates a master key,
MK, which it uses to compute the secret keys on
the smartcards. Every smartcard, SC comes with a
unique serial number, SN, that is visible on the out-
side of the card. When a smartcard is manufactured,
the house computes KSC = fMK(SN), which is the
pseudorandom function keyed by the master key and
evaluated at the serial number. The secret key, KSC ,
is stored in the tamper resistant portion of the smart-
card. The key need not be saved by the house. It can
be recomputed from the serial number and the master
key.

Once the shared secret, KSC , is established, we
can authenticate messages using a secure Message Au-
thentication Code (MAC). The best-known and most
reliable MAC we are aware of is HMAC [3]. This is
a function of a message and a secret key, such that
only a party in possession of the secret key could have
produced the MAC.

In the following protocol, we assume that messages
are still signed and chained as explained in Section
4.1.3. Communication from the user to the SC is via
the device implicitly. We use $500 as an example.

1. User ! Smartcard: \Add $500"

2. Smartcard ! User: N0

3. User ! House: N0; SN; $500, \Add $500"

4. House!User: AUTH = Trunc80(HMACKSC (N0;

SN, House, \Add $500"))

5. User ! Smartcard : AUTH

In message 1, the user utilizes the GUI on the de-
vice to indicate that he wishes to add $500 to the card.
In message 2, the smartcard issues a challenge consist-
ing of an 80 bit random nonce, N0. The nonce can be
represented by 16 alphanumeric characters, which is a
reasonable amount for the user to read and convey to
the house. Once the smartcard issues the challenge, it
locks up and refuses any message except a valid AUTH
response corresponding to the amount in message 1.

In message 3, the user pays the house $500. This
could be by credit card, check, cash, or any other
form. In addition, he passes along the nonce and the
serial number, which he reads o� the outside of the
smartcard. The entire transaction could take place
by telephone if the house is willing to accept credit

card payments by phone. Once the house receives the
challenge, it computes KSC from the serial number
and the master key. It then computes the MAC of the
nonce and the request to add $500. Finally, the result
is truncated to contain only the �rst 80 bits. These
are sent to the user as 16 alphanumeric characters.

The user enters AUTH into the device, which passes
it along to the smartcard. The smartcard uses its
stored secret key,KSC to compute the truncated MAC
on the request to add $500 and compares it to the one
received from the house. If the computed value does
not match the value from the house, then the card
remains locked. Otherwise, the balance on the card
is increased by $500. The protocol is illustrated in
Figure 2.

After outputting N0, it is important that the card
lock up until it receives a correct AUTH from the user.
This is to prevent parallel runs of the protocol, which
could lead to potential attacks [1].

The protocol is not susceptible to replay. To suc-
cessfully add any amount to the smartcard, the user
must receive a new challenge from the smartcard, and
the smartcard does nothing until the AUTH for that
amount is received. The house only releases AUTH
values for amounts that are paid, so replaying any of
the messages in the protocol cannot result in stealing
money from the house.

An adversary who does not possess the master key
cannot produce a valid AUTH for an arbitrary smart-
card. Furthermore, if someone breaks into a smart-
card, he can only expose the secret key for that card,
because keys are independent from each other, given
the properties of pseudorandom functions. However,
if the person breaks into a card, that card is pretty
much compromised, so the scheme introduces no fur-
ther loss. The important thing is that compromising
one card does not give one the ability to add value to
another card. In Section 7 we discuss ways of identi-
fying and dealing with compromised cards.

Bellare et. al. [4] show that functions that give the
desirable pseudorandom properties for f above can
be easily constructed from simple hash functions. For
our application HMAC is a reasonable choice.

6.2 Cashing out

In this section, we describe a protocol for removing
value from the smartcard and receiving money. Once
again we assume the bandwidth between the house
and smartcard is limited by a user in the middle of
the protocol. We assume the entire transaction takes
place with a single phone call from the user to the
house, but of course, this could be done over the web,
or many other ways.

House
N0, $500 ,sn, "Add $500"

AUTH

Smartcard

Serial number

1

2 3

4

56

AUTH = Trunc 80(HMAC k(N0, SN, H, "Add $500"))

7
?

k = f MK(SN)

"Add $500"

N0 = 0110011100011

AUTH USER

AUTH = Trunc 80(HMAC k(N0, SN, H, "Add $500"))

Figure 2: Protocol to add value to the smartcard In step 1, the user indicates to the smartcard that the amount to

add is $500. In step 2, the smartcard sends a random nonce, N0, to the user. In step 3, the user sends the serial number on
the smartcard and the nonce to the house and pays the house $500. Step 4 shows that the house computes the smartcard

key using the psuedorandom function, f and then the HMAC of the amount to add and the nonce, and then truncates to

80 bits. The result is AUTH, which is sent to the user and directly to the smartcard. In step 7, the smartcard performs
the same operation using the stored key. If this computed amount matches the AUTH value, the smartcard credits the

user with $500.

We illustrate the protocol with an example. As-
sume the user wishes to cash out $500 from the smart-
card. The protocol is as follows:

1. User ! House: Withdraw

2. House ! User: N0

3. User ! Smartcard: N0, \Withdraw $500"

4. Smartcard ! User: AUTH = Trunc80(
HMACKSC(N0, SN, House,\Withdraw $500"))

5. User ! House: AUTH, SN, \Withdraw $500"

6. House ! User: $500

This protocol is similar in spirit to the one for
adding value. We use a scenario to describe how the
protocol works. The user calls up the house on the
phone and says that he wants to withdraw money.
The house provides him with a challenge, which con-
sists of a random nonce of length 80 bits, encoded
in 16 alphanumeric characters. The user enters the
16 characters into the device, which feeds them to
the smartcard, along with the amount, $500. In mes-
sage 4, if the smartcard does not have $500, an error
is returned. Otherwise, the smartcard deducts $500

from the card and constructs the HMAC of the chal-
lenge and the amount to be withdrawn. The message
is truncated to 80 bits to produce AUTH.

In message 5, the user reads AUTH to the house,
along with the serial number on the back of the smart-
card. The user also indicates that this authorization
is for $500. The house then constructs the user's
key, KSC from the serial number and computes the
HMAC, and compares the resulting string to the au-
thorization from the user. If they match, the house
then mails a check for $500 to the user. Of course, the
payment could consist of a wire transfer or any other
form of payment.

The add value and cash out protocols work because
both the smartcard and the house have access toKSC ,
while nobody else does.

7 Audit process

Securing systems requires more than just cryptog-
raphy and sound protocols. Logging, audit and con-
trols are an integral part of any complete system.
In our system, it is important that the house mon-
itor cash out requests very carefully. In the unlikely
event that a particular smartcard is physically com-
promised, there is a danger that an attacker could

manufacture money. Therefore, the house should log
all cash out requests by serial number. If a particu-
lar card requests cash out with frequency or amount
above a certain threshold, an alarm should be trig-
gered. The suspected serial number should be added
to a watch list, and if the behavior continues, an in-
vestigation may be required. An example of a coun-
termeasure is to notify the user the next time he tries
to cash out that his card is being replaced. The re-
placed smartcard should automatically be on a hotlist
that is closely monitored.

Another possibility is to issue smartcards with ex-
piration times. This limits the exposure of the smart-
card to its valid period. This could also have side
e�ects of increasing the take of the house because of
money lost to expired cards. However, this may not
go over very well with users.

8 Conclusions

We describe a system that utilizes the tamper-resistant
nature of smartcards to enable a personalized gam-
bling device. The protocols presented have the prop-
erty that neither the house nor the user can cheat. In
addition, we present protocols for adding or remov-
ing money from the smartcards over a low-bandwidth
channel, such as a person on the telephone. These
protocols are relevant even outside of the context of
gambling.

References

[1] M. Abadi and R. Needham. Prudent engineering
practice for cryptographic protocols. Proceedings
of the 1994 IEEE Computer Society Symposium
on Research in Security and Privacy, pages 122{
136, 1994.

[2] Accredited Standards Committee X9. Working
Draft: American National Standard X9.30-1993:
Public Key Cryptography Using Irreversible Algo-
rithms for the Financial Services Industry: Part
2: The Secure Hash Algorithm (SHA), 1993.

[3] M. Bellare, R. Canetti, and H. Krawczyk. Key-
ing hash functions for message authentication.
Crypto 96 Proceedings, 1996.

[4] M. Bellare, R. Canetti, and H. Krawczyk. Pseu-
dorandom functions revisited: The cascade con-
struction and its concrete security. Proc. 37th
Annual Symposium on the Foundations of Com-
puter Science, 1996.

[5] M. Blum. Coin
ipping by telephone. In Proc.
IEEE Spring COMPCOM, pages 133{137. IEEE,
1982.

[6] G. Brassard, D. Chaum, and C. Crepeau. Min-
imum discloser proofs of knowledge. Journal
of Computer and System Sciences, 37:156{189,
1998.

[7] D. Dolev, C. Dwork, and M. Naor. Non-malleable
cryptography. In Proceedings of the 23rd Annual
ACM Symposium on Theory of Computing, pages
542{552, 1991.

[8] S. Haber and W.S. Stornetta. How to time-stamp
a digital document. In A.J. Menezes and S. A.
Vanstone, editors, CRYPTO90, pages 437{455.
Springer-Verlag, 1991. Lecture Notes in Com-
puter Science No. 537.

[9] Chris Hall and Bruce Schneier. Remote electronic
gambling. 13th Annual Computer Security Ap-
plications Conference, pages 227{230, December
1997.

[10] Kipp E. B. Hickman and Taher Elgamal. The
SSL protocol. Internet draft draft-hickman-
netscape-ssl-01.txt, 1995.

[11] A.J. Menezes, P. V. Oorschot, and S. A. Van-
stone. Handbook of Applied Cryptography. CRC
Press, 1997.

[12] M. Naor. Bit commitment using pseudo-
randomness. In Advances in Cryptology|
CRYPTO '89 Proceedings, pages 128{136.
Springer Verlag, 1990.

[13] R. Rivest. The md5 message digest algorithm.
RFC 1321, April 1992.

[14] Bruce Schneier and John Kelsey. Automatic
event-stream notarization using digital signa-
tures. Security Protocols: International Work-
shop, Cambridge, UK, pages 279{286, 1997.

[15] Bruce Schneier and John Kelsey. Cryptographic
support for secure logs on untrusted machines.
Seventh USENIX Security Symposium, pages 53{
62, January 1998.

