An experience teaching a graduate course in cryptography

Aviel D. Rubin *

rubin@cs.nyu.edu
New York University
251 Mercer St.
New York, NY 10012

Abstract

We describe an experience of teaching “Cryptography and Computer Security” in the fall of 1995 at New York University. The class was intended as an introduction for graduate students interested in exploring the historical, theoretical and practical aspects of computer security. Topics covered include classical cryptography, elementary number theory, several security systems, and protocols. The focus on breadth was intentional as the goal of the course was to give students with widely divergent backgrounds exposure to different areas that might interest them. The course content as well as lessons learned and plans for the future are discussed.

1 Introduction

This paper describes a course titled “Cryptography and Computer Security” that was taught at New York University in the Fall of 1995. The department head at NYU requested a course for practitioners, with an emphasis on applications and real-world problems. Thus, there were four phases to the course, classical cryptography, conventional cipher systems, applications of cryptography, and number theory. Grading was based on five homework sets and a semester project. The course used Bruce Schneier’s book, Applied Cryptography [38] as the primary text, which was supplemented by a course pack of selected publications. In addition, materials were used from the following books: Doug Stinson’s, Cryptography: Theory and Practice [41], Dorothy Denning’s Cryptography and Data Security [13], Garfinkel and Spafford’s Practical Unix Security [16], Kaufman, Perlman and Speciner’s Network Security [24], and William Stallings’s Network and Internetwork Security Principles and Practice [39].

The cryptography and computer security course was offered in the Courant Institute of Mathematical Sciences (http://cims.nyu.edu/) on Tuesday evenings from 5-7, and consisted entirely of graduate students. Some of them had full-time jobs during the day, and were taking courses at night. There were 20 registered students, about 10 auditors who showed up regularly, and a teaching assistant.

One idea for the class that came from Stuart Haber, who teaches a cryptography course at Columbia, was somewhat successful. Each lecture was assigned at least one student scribe. The scribe was responsible for taking careful notes and producing a write-up of the lecture, which was then shared with the class. The students received a homework grade on their write-up. The write-ups were of varying qualities, but the feedback from the students was that they were useful. Three samples can be found in http://www.cs.nyu.edu/~rubin/course/.

*Author web page: http://www.cs.nyu.edu/~rubin/
Whenever possible, current events were discussed as they occurred. There were several headlines in the New York Times during the semester, and these were presented and discussed at the start of the following lecture. For example, articles appeared about the Berkeley group who successfully attacked NFS [8] and found flaws in the random number generator of an early version of Netscape; and Paul Kocher’s timing attack [25] on RSA (which appeared the week after RSA was taught).

2 Goals

The problem with teaching an introductory course is that there are too many interesting and important topics to choose from. The goal of the cryptography and security class was to provide students with enough information to decide what areas to explore further. As such, there was an emphasis on breadth.

Cryptography and security are two of the best examples of the interaction between theory and practice. The course aimed to capture this relationship. The first few lectures covered historical cryptographic systems. These are important because they are simple and the insights they provide carry over to more sophisticated systems. Next, modern conventional systems were covered. These lectures provided the students with the tools they needed to understand the more applied part of the course. Several system were covered that are used to secure systems and networks in practice. Finally, the course shifted gears and covered number theory to give students an in-depth look at public key cryptography.

The purpose of covering so many different topics was to stimulate areas that interest students of varying backgrounds. Another goal was to find students who wish to pursue security and cryptography as their area of research.

3 Other courses

There are several other courses offered on this topic. Most of these classes cover the basics of cryptography from number theory to symmetric ciphers. Stinson’s book [41] is the overwhelming favorite. Several of the courses focus on one particular application of cryptography, such as telecommunications or networking. However, the majority of the classes are solely mathematical. In general, the courses offered are graduate courses that are open to advanced undergraduates. Here is a list of some courses and their web references:

- Avi Rubin and Matt Franklin are teaching a new course on cryptographic protocols and analysis (http://cs.nyu.edu/cs/dept.info/course.home.pages/fall96/622.3033.02/).
- Alan Sherman has a couple of courses at UMBC on cryptography and Internet security: (http://www.cs.umbc.edu/sherman/Courses/443/) and (http://www.cs.umbc.edu/sherman/Courses/691g/index.html).
- Ron Rivest’s course on network and computer security (http://web.mit.edu/6.857/www/home.html).
- Several courses related to information security at George Mason University (http://www.isse.gmu.edu/csis/node2.html).
- Shuhong Gao’s introduction to cryptography at Clemson University (http://www.math.clemson.edu/faculty/Gao/MTHSC985/M985.html).
Purdue has a course in cryptography and secure communications taught by Edward Delp (http://dynamo.ecn.purdue.edu/ ace/courses/ee627/ee627.html).

Phil Rogaway teaches a class called modern cryptography at UC-Davis (http://wwwcsif.cs.ucdavis.edu/ rogaway/classes/227/fall96/handouts.html).

There is a course at Worcester Polytechnic Institute on Cryptography and Data Security (http://ece.wpi.edu/Programs/courses/ee5790.html).

Scott Vanstone teaches C&O 437/637 Cryptography and Communications Security at the University of Waterloo with TA, Robert Zuccherato (http://barrow.uwaterloo.ca/ rjzucche/).

There is a course on cryptography and security at California State University, Hayward (http://www.mcs.csuhayward.edu/mcs/brochure/grad_cs_brochure/node36.html).

At Oregon State University, Cetin Kaya Koc teaches a course on Data Security & Cryptography (http://www.ece.orst.edu/ koc/ece573/).

Kevin McCurley teaches Cryptology in Computing at the University of New Mexico (http://www.swcp.com/ mccurley/course/).

Dave Balenson teaches a course on telecommunications security at George Washington University (http://www.clark.net/pub/mitchb/ee250.html).

Jingmin He teaches an introduction to cryptography course at Duke (http://www.cs.duke.edu/~jhe/cps2963.html).

At UCSD, Adriano Garsia teaches a math course called Introduction to Cryptography (http://sdcc14.ucsd.edu/~ma187s/description.html).

At Odense University in Denmark, Joan Boyar teaches a course on cryptology (http://www.imada.ou.dk/~joan/crypt/).

At the University of Rochester, there is a course on number theory and cryptography (http://www.math.rochester.edu/courses/catalog/MTH233.html).

Edward Scheinerman teaches Coding and Cryptology at John Hopkins University (http://www.mts.jhu.edu/~ers/crypto/crypto.html).

Richard Salter teaches Cryptology at Oberlin (http://www.cs.oberlin.edu/classes/cs115/).

Peter Honeyman teaches a course on cryptography and its applications at the University of Michigan (no URL available).

4 Classical cryptography

Classical cryptography includes ciphers that are of historical significance. They are of little or no practical use for today’s systems. However, there is some insight into how they were designed and attacked that is useful for looking at modern systems.

The first two and a half lectures were devoted to classical cryptography. Students were introduced to some simple ciphers such as substitution, affine, Hill [20], etc. Then, the progression to polyalphabetic
ciphers and finally Vernam ciphers was explored. At this time, the notions of known plaintext, chosen plaintext, chosen ciphertext, etc. were introduced. Various techniques, such as index of coincidence and the Kasiski method [23] for cryptanalyzing classical ciphers, were discussed and demonstrated. Several examples from David Kahn’s Codebreakers [22] were also used.

The next subtopic under classical ciphers was Shannon’s information theory, which revolutionized cryptanalysis. Students were taught how to measure key equivocation, unicity distance, and other properties of cryptosystems.

5 Conventional cipher systems

This part of the course focused on the symmetric cipher systems, their use, implementation, and analysis.

There were four lectures devoted to conventional ciphers. The first system taught was the Data Encryption Standard, DES [30]. The algorithm was discussed in depth, including the individual rounds, the various permutations and substitutions, and what little is known about the design of the S/Boxes. The course touched on differential [5] and linear [29] cryptanalysis, exhaustive key search, DES breaking machines [43], and various results from the literature on attacking DES. In addition, hardware and software implementations were compared. Finally, the class learned about key lengths, security and export issues.

After the design and analysis of DES was taught, students learned how to use this function. Different modes of operation (e.g. ECB, CBC, etc) were discussed, as well as performance issues and block ciphers versus stream ciphers.

In addition to the in-depth exploration of DES, the class learned about other symmetric ciphers, such as IDEA [27] and RC4 [34]. During this part of the course, the notion of key escrow (government and commercial) was discussed. The class covered clipper [12], skipjack [9], and TIS’s Key Recovery Center [42], along with the potential effect of escrow on allowable key lengths for export. Then, lecture time was devoted to the effects of combining different algorithms.

Another important topic that was covered was hash functions. MD5 [32] and SHA [1] were given as good examples of collision free one-way functions. Various uses of hash functions were discussed. The time-stamping system of Haber and Stornetta [18] is one example of an interesting application of hash functions. Finally, various message authentication codes (MAC’s) were discussed.

6 Applications of cryptography

This section of the course, which included 5 lectures, dealt with security issues in actual systems. Unfortunately, there was not enough time in one course to cover everything, so only several systems were analyzed in detail, and the rest were briefly studied. Security at different network layers, especially the IETF work on transport and network layer security, received considerable attention. In particular, the class studied IP-layer encapsulation and key management [21]. One of the groups chose to do their semester project on this topic. The students were introduced to PGP [44], which they were required to understand and use. Tradeoffs between PGP and PEM [2] were discussed, along with issues about the web of trust versus a strict hierarchy of certificates. Message formats for both systems (PGP and X.509) were covered. The Betsi system [35], which uses PGP, and provides integrity assurances to users who download software from the Internet, was also mentioned in class.

Considerable time was spent on authentication systems. Among the systems covered in class were one-time password schemes [19, 37], Kerberos [40], Khat [36], and Kryptoknight [6]. In addition, secure
file systems, such as CFS [7] and SFS [17], were covered. Next, the class was introduced to the concept of evaluation criteria, in particular, the orange book [14] definitions were given.

Key agreement protocols, such as Diffie-Hellman [15], were also covered. Man in the middle attacks, and an authenticated version of the protocol were discussed. Several performance and implementation issues wrapped up the conversation on this topic.

As part of the computer security section of the course, Anish Bhimani of Belcore gave a guest lecture on firewalls [11]. The class was taught the purpose of firewalls, how they are built and maintained, and their limitations.

Two topics of practical significance were password choosing and Unix© security. Several studies that demonstrate how poorly users choose passwords were discussed. Mechanisms for checking a system for bad passwords, as well as preventing them were also covered. There is a definite trade-off between convenience and security when it comes to user passwords. Next, Unix security was studied. Some classical attacks were presented, as well as common sense system administration. This section concluded with a lecture on computer viruses on three different platforms, Macintosh, PC, and Unix.

Finally, Jack Lacy of Bell Labs came to talk about his CRYPTOLIB package [26]. It is a library of extremely fast cryptographic routines for almost any platform. The software was released to the students, most of whom used it for their projects. The library proved to be extremely useful.

7 Number Theory

The next four lectures dealt with number theory. This section of the course began with elementary number theory and modular arithmetic. Then, several algorithms, such as square and multiply for fast exponentiation, were given. The Diffie-Hellman problem was visited again in this section in more detail. Next, multiplicative inverses were covered, along with many theorems related to their properties. Later, Euler’s totient function, \(\phi(n) \), was introduced. This led to Fermat’s theorem that given a prime \(p \) and an \(a \) such that \(\gcd(a, p) = 1 \), then

\[
a^{p-1} \mod p = 1
\]

and Euler’s generalization that for every \(a \) and \(n \) such that \(\gcd(a, n) = 1 \),

\[
a^{\phi(n)} \mod n = 1
\]

Several results were proven in class, and others were given as homework assignments.

Other algorithms, such as Euclid’s extended algorithm for finding inverses and the Chinese remainder theorem for solving simultaneous systems of equations were covered in class and in the homework assignments. The next section in the number theory lectures dealt with Galois fields. GF(\(2^n \)) and GF(p) were discussed and compared.

After Galois fields were taught, the students were presented exponentiation ciphers, such as the Pohlig-Hellman scheme [31], which can be used as a conventional cipher. The security of this scheme rests on the difficulty of the discrete log problem, which was the next topic in the class.

After Pohlig-Hellman, the RSA [33] scheme was introduced. Some lecture time was devoted to giving examples of using RSA, and discussing various attacks on it, including the current status of factoring. Several topics related to implementing RSA were covered next. Various techniques for obtaining large primes with high probability were discussed. The class was taught about Legendre and Jacobi symbols, and several number theory results that use them. Primality tests such as the Solovay-Strassen and the Miller-Rabin tests were covered, as well as methods for combining the techniques.

Unix is a registered trademark of Unix Systems Laboratories.
Once the students understood how RSA worked, an interesting application (developed by the same authors), mental poker, was presented. In this scheme, users who share a common modulus can play poker using the commutative property of RSA encryption. However, by observing which cards were quadratic residues and which were not, a cheating party can obtain a bit of information about each card and cheat [28]. The lesson here is that cryptographic algorithms cannot be used as black boxes. A developer must consider the environment in which the algorithm will run, as well as subtleties of the algorithms themselves.

The last part of the number theory section was given by a guest lecturer, Stuart Haber. He taught the class about zero-knowledge proofs using number theory.

8 Student projects

One important element of the course was the student projects. Students formed groups of one to four people, where each member of the group received the same grade. Projects accounted for 40% of the semester grade. The groups were given complete freedom to choose their topics, but the format of the project was defined. However, several exceptions to the format were approved.

The first stage in the project was problem definition. There was an early deadline for students to submit a problem statement. At least two groups submitted problem statements that ended up completely unrelated to their final projects. The next deadline was a survey of previous work on the problem. Most projects included some implementation work, and a final report was due on the last day of class. The report consisted of a problem statement, survey report, implementation section, results, and conclusions. On the last day of classes, each group presented their project to the class. Final project grades were based on the report and the presentation.

The quality of the projects ranged from poor to excellent. At least two of the groups submitted papers for publication, and three of the groups are continuing work on their projects on their own. Two of the best students in the class worked at Bellcore the following summer on projects related to their course projects, and one of these students is now pursuing a problem, under the direction of the instructor, that will lead to his Ph.D. thesis topic.

One of the groups’ projects was to improve the security of the Courant Institute’s computer center. The group developed a site security policy. In addition, they obtained many public domain security packages, such as Tripwire, COPS, S/KEY, etc. and explored their installation at Courant. The group also installed version V of Kerberos on some test machines, to test the feasibility of deploying it on the actual network. This group worked together with the system administrators and a faculty member in charge of a committee to help secure their network.

Another successful project dealt with NFS security. The group working on this project implemented a one-time password scheme to authenticate NFS accesses, and designed an encrypted NFS file system based on this technique. The students are continuing their work and plan to submit a paper to an upcoming security conference. Their preliminary performance numbers indicate that the performance hit is negligible.

There was a group in the class that attempted to implement the emerging IETF standards for IP layer security, under DOS. This project was too ambitious, and the results were marginal at best. A more successful project came from a student who did his project alone. He designed a system to help eliminate fraud in cellular phone systems. The student actually contacted Nynex and Bell Atlantic. His system is very practical, and may actually be implemented some day.
9 Lessons learned

An important lesson learned from the course projects is that most students do not like open-ended problems. A little guidance goes a long way. Next semester, the students will be able to choose from a list of projects, or pursue something on their own. This will eliminate some of the confusion (and fear). Another lesson from the number theory section is that there is no such thing as too many examples. Many of the number theory concepts are quite abstract, and until an example demonstrates a particular technique, there is little or no intuition gained the first time something is explained.

The last lesson learned from this class is that computer security and cryptography are very hot topics right now. Several students brought friends of theirs to sit in on lectures, there was one faculty member who attended regularly, and many students felt there was a direct relationship between what they were learning in class and their current jobs.

10 Future course plan

We are currently offering a course at NYU about cryptographic protocol design and analysis. The course is being taught jointly with Matt Franklin of AT&T Research Labs. There is a home page for the course at (http://cs.nyu.edu/cs/dept_info/course_home_pages/fall96/022.3033.02/).

A sequel to the current course is planned. The new course will assume the current class as a prerequisite. It will delve deeper into the current topics and introduce some new ones.

The second course in cryptography and computer security will cover more topics in number theory. Other cryptographic algorithms and protocols will be taught, including concepts such as oblivious transfer, bit commitment, blind signatures, simultaneous contract signing, anonymous broadcast, byzantine agreement, etc.

Another part of the course will focus on electronic commerce including protocols such as VISA and Mastercard’s SET, IBM’s iKP, and Netscape’s SSL.

If there is time, other topics under consideration are secure operating systems, including multilevel systems and covert channel analysis, the Bell-LaPadula model [3], the use of smart cards for security, Windows NT security, formal methods, logics of authentication, such as the BAN logic [10], and analysis techniques such as that of Bellare and Rogaway [4].

References

